论文标题

用潜在的低维动力学对多元时空数据进行建模

Modeling Multivariate Spatial-Temporal Data with Latent Low-Dimensional Dynamics

论文作者

Chen, Elynn Y., Yun, Xin, Chen, Rong, Yao, Qiwei

论文摘要

高维多元时空数据经常出现在广泛的应用中;但是,相对较少的统计方法可以同时处理大型数据集中的空间,时间和可变依赖性。在本文中,我们提出了一种新的方法来利用可变,时空和时间中的相关性,以实现降低尺寸并促进高维设置中的空间/时间预测。多元时空过程表示为低维潜在因子过程的线性变换。因子过程的空间依赖性结构以潜在的经验正交函数的形式进一步代表。低维结构在我们的环境中是完全未知的,并且完全从不规则地收集的数据中学到,但会随着时间的流逝而定期进行。我们提出了基于潜在低级结构的创新估计和预测方法。建立了估计器和预测因子的渐近性能。关于合成和真实数据集的广泛实验表明,虽然尺寸显着降低,但在很大程度上保留了空间,时间和可变的协方差结构。通过合成和真实数据集的预测性能进一步证实了我们方法的功效。

High-dimensional multivariate spatial-temporal data arise frequently in a wide range of applications; however, there are relatively few statistical methods that can simultaneously deal with spatial, temporal and variable-wise dependencies in large data sets. In this paper, we propose a new approach to utilize the correlations in variable, space and time to achieve dimension reduction and to facilitate spatial/temporal predictions in the high-dimensional settings. The multivariate spatial-temporal process is represented as a linear transformation of a lower-dimensional latent factor process. The spatial dependence structure of the factor process is further represented non-parametrically in terms of latent empirical orthogonal functions. The low-dimensional structure is completely unknown in our setting and is learned entirely from data collected irregularly over space but regularly over time. We propose innovative estimation and prediction methods based on the latent low-rank structures. Asymptotic properties of the estimators and predictors are established. Extensive experiments on synthetic and real data sets show that, while the dimensions are reduced significantly, the spatial, temporal and variable-wise covariance structures are largely preserved. The efficacy of our method is further confirmed by the prediction performances on both synthetic and real data sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源