论文标题
光气流仪带有光散射引用
Optoacoustic flow-cytometry with light scattering referencing
论文作者
论文摘要
类似于荧光蛋白的开发,用于筛选光声细胞标签的创新工具可能会导致针对OA的量身定制的蛋白质标签,从而赋予可视化生物结构和功能的新型方法。光声成像以有利的能力(例如可访问深度和3D研究生命组织)的有利能力来实现生命科学和医学实践的高度有希望的方式。具有分子特异性的新型标签的发展可以显着增强光声对比度,特异性和灵敏度,并允许光声询问不适合荧光方法的组织。我们报告了用于筛选光声报告基因的光流式流式细胞仪(OAFC)原型。细胞仪同时记录了用于参考目的的光散射。由于记录光散射完全独立于OA,因此我们认为这是一种比例如荧光或超声 - 折线。我们OAFC原型的精确表征展示了其光学表征对象在单元尺寸范围内的流量范围内表征对象的能力。我们使用OAFC根据其表达的铬蛋白的光声特性来区分单个大肠杆菌细胞,该特性使用微流体布置读取流量,并实现了超过90%的精确度。我们讨论了如何通过转移荧光场的工作概念来识别遗传编码的光声报告记者的光散射如何为常规测量光声性特性提供关键步骤。
In analogy to the development of fluorescent proteins, innovative tools for screening optoacoustic cell labels could lead to tailored protein labels for OA, imparting novel ways to visualize biological structure and function. Optoacoustic imaging emerges towards a highly promising modality for life sciences and medical practise with advantageous capabilities such as great accessible depth, and 3D studying of living tissue. The development of novel labels with molecular specificity could significantly enhance the optoacoustic contrast, specificity, and sensitivity and allow optoacoustic to interrogate tissues not amenable to the fluorescence method. We report on an optoacoustic flow cytometer (OAFC) prototype, developed for screening optoacoustic reporter genes. The cytometer concurrently records light scattering for referencing purposes. Since recording light scattering is completely independent from OA, we believe it to be a more reliable referencing method than e.g. fluorescence or ultrasound-backscatter. Precise characterization of our OAFC prototype showcases its ability to optoacoustically characterize objects in-flow that are in the size range of single cells. We apply the OAFC to distinguish individual E. coli cells based on optoacoustic properties of their expressed chromoproteins read in-flow using microfluidic arrangements and achieved precisions over 90%. We discuss how the light scattering referenced OAFC method offers a critical step towards routine measurement of optoacoustic properties of single-cells and could pave the way for identifying genetically encoded optoacoustic reporters, by transferring working concepts of the fluorescence field.