论文标题
结的galois对称空间
Galois symmetries of knot spaces
论文作者
论文摘要
我们利用了小磁盘的盛大对称性,以表明近似于$ p $的结式频谱序列中的许多差异序列,近似于结的同源性和同质性。再加上嵌入微积分与有限型理论之间关系的最新结果,我们推断出$(n + 1)$ - ST GoodWillie-Weiss近似是$ p $ - 局部通用vassiliak度的$ \ leq n $,每$ n \ n \ leq p + 1 $。
We exploit the Galois symmetries of the little disks operads to show that many differentials in the Goodwillie-Weiss spectral sequences approximating the homology and homotopy of knot spaces vanish at a prime $p$. Combined with recent results on the relationship between embedding calculus and finite-type theory, we deduce that the $(n+1)$-st Goodwillie-Weiss approximation is a $p$-local universal Vassiliev invariant of degree $\leq n$ for every $n \leq p + 1$.