论文标题
同质理论中的根源
Adjoining roots in homotopy theory
论文作者
论文摘要
我们使用一种“扭曲的组代数”方法来建设性地与正式的自由基$ \ sqrt [n]α$,以$α$ $α$在交换环频谱中,或在对称的单体$ \ infty $ eftty $ -pategory中以对称单差为单位。我们表明,这种结构是由从Eilenberg-Mac车道对象到单元频谱,Picard Spectrum和Brauer Spectrum的地图进行分类的。
We use a "twisted group algebra" method to constructively adjoin formal radicals $\sqrt[n]α$, for $α$ a unit in a commutative ring spectrum or an invertible object in a symmetric monoidal $\infty$-category. We show that this construction is classified by maps from Eilenberg-Mac Lane objects to the unit spectrum, the Picard spectrum, and the Brauer spectrum.