论文标题
线性动力学系统的快速稳定参数估计
Fast Stable Parameter Estimation for Linear Dynamical Systems
论文作者
论文摘要
动力学系统描述了其基本的物理原理自然产生的过程的变化,例如运动定律或质量,能量或动量的保护。这些模型促进了该过程的驱动因素和障碍的因果解释。但是他们是否描述了观察到的数据的行为?我们如何量化无法直接测量模型的参数?本文通过提供估计解决方案的方法来解决这两个问题。以及从不完整和嘈杂的过程的线性动力学系统的参数。 所提出的过程建立在参数级联方法的基础上,其中基础函数的线性组合近似于动态系统的隐式定义解决方案。然后估算系统的参数,以使该近似解决方案遵守数据。通过利用系统的线性性,我们简化了参数级联估计过程,并通过开发新的迭代方案,我们实现了快速稳定的计算。 我们通过获得代表来自生物力学的真实数据的线性微分方程来说明我们的方法。将我们的方法与估计线性动态系统参数的流行方法进行比较,即非线性最小二乘方法,模拟退火,级联参数级联和平滑功能回火揭示了计算的降低以及改善的偏置和采样差异。
Dynamical systems describe the changes in processes that arise naturally from their underlying physical principles, such as the laws of motion or the conservation of mass, energy or momentum. These models facilitate a causal explanation for the drivers and impediments of the processes. But do they describe the behaviour of the observed data? And how can we quantify the models' parameters that cannot be measured directly? This paper addresses these two questions by providing a methodology for estimating the solution; and the parameters of linear dynamical systems from incomplete and noisy observations of the processes. The proposed procedure builds on the parameter cascading approach, where a linear combination of basis functions approximates the implicitly defined solution of the dynamical system. The systems' parameters are then estimated so that this approximating solution adheres to the data. By taking advantage of the linearity of the system, we have simplified the parameter cascading estimation procedure, and by developing a new iterative scheme, we achieve fast and stable computation. We illustrate our approach by obtaining a linear differential equation that represents real data from biomechanics. Comparing our approach with popular methods for estimating the parameters of linear dynamical systems, namely, the non-linear least-squares approach, simulated annealing, parameter cascading and smooth functional tempering reveals a considerable reduction in computation and an improved bias and sampling variance.