论文标题

范德华异质结构中的拓扑超导性

Topological superconductivity in a van der Waals heterostructure

论文作者

Kezilebieke, Shawulienu, Huda, Md Nurul, Vaňo, Viliam, Aapro, Markus, Ganguli, Somesh C., Silveira, Orlando J., Głodzik, Szczepan, Foster, Adam S., Ojanen, Teemu, Liljeroth, Peter

论文摘要

设计师的方法已成为访问物质新颖量子阶段的新范式。此外,对任何单个材料等异国情调状态(例如拓扑绝缘子,超导体和量子自旋液体)的实现通常会带来挑战甚至矛盾的需求。例如,目前尚不清楚拓扑超导率是否被认为是拓扑量子计算的关键要素,根本存在于任何天然发生的材料中。可以使用组合不同材料的设计器异质结构来规避此问题,其中所需的物理学来自不同组件之间的工程相互作用。在这里,我们采用设计师方法来展示两个主要突破 - 范德华(VDW)异质结构的制造,结合了2D铁磁和超导性和2D拓扑超导性的观察。我们使用分子梁外延(MBE)在超导型niobium diselenide(NBSE $ _2 $)上种植铁磁性铬三元铬的二维岛(CRBR $ _3 $),并显示了使用低位验证的一维大型模式的签名,并显示了一维大型模式的签名(stannning scannelning tunnelning tunnelning tunmoscy(Spents)。制造的二维VDW异质结构提供了一个高质量的可控平台,可以集成在利用拓扑超导性的设备结构中。最后,可以通过电气,机械,化学或光学手段可以外部控制2D拓扑超导的外部控制,从而可以轻松地通过各种外部刺激来访问分层的异质结构。

The designer approach has become a new paradigm in accessing novel quantum phases of matter. Moreover, the realization of exotic states such as topological insulators, superconductors and quantum spin liquids often poses challenging or even contradictory demands for any single material. For example, it is presently unclear if topological superconductivity, which has been suggested as a key ingredient for topological quantum computing, exists at all in any naturally occurring material . This problem can be circumvented by using designer heterostructures combining different materials, where the desired physics emerges from the engineered interactions between the different components. Here, we employ the designer approach to demonstrate two major breakthroughs - the fabrication of van der Waals (vdW) heterostructures combining 2D ferromagnetism with superconductivity and the observation of 2D topological superconductivity. We use molecular-beam epitaxy (MBE) to grow two-dimensional islands of ferromagnetic chromium tribromide (CrBr$_3$) on superconducting niobium diselenide (NbSe$_2$) and show the signatures of one-dimensional Majorana edge modes using low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS). The fabricated two-dimensional vdW heterostructure provides a high-quality controllable platform that can be integrated in device structures harnessing topological superconductivity. Finally, layered heterostructures can be readily accessed by a large variety of external stimuli potentially allowing external control of 2D topological superconductivity through electrical, mechanical, chemical, or optical means.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源