论文标题
分数KPZ方程在梯度方面具有关键的增长对强大的潜力
Fractional KPZ equations with critical growth in the gradient respect to Hardy potential
论文作者
论文摘要
在这项工作中,我们研究了分数准线性问题的积极解决方案,$$ \ left \ {\ oken {array} {rcll} {rcll}(-Δ)^s u&=&λ\ dfrac {u} &\innΩ,\\ u&=&0&\ inn(\ mathbb {r}^n \setMinusΩ),\ end {array} \ right。 $$ $ω$是$ c^{1,1} $有界域中的$ \ mathbb {r}^n $,$ n> 2s,μ> 0 $,$ \ frac {1} {2} {2} <s <1 $,$ 0 <λ_{n,s} $ nis(3)。我们假设$ f $是具有其他假设的非负功能。 正如我们将看到的那样,关于$λ= 0 $的情况有很大的差异。更确切地说,如果$λ> 0 $,则存在关键指数$ p _ {+}(λ,s)$,因此对于$ p> p> p _ {+}(λ,s)$,没有积极的解决方案。此外,$ p _ {+}(λ,s)$在某种意义上是最佳的,因为如果$ p <p <p <p _ {+}(λ,s)$,则存在一个积极的解决方案,可用于合适的数据,而$μ$足够小。
In this work we study the existence of positive solution to the fractional quasilinear problem, $$ \left\{ \begin{array}{rcll} (-Δ)^s u &=&λ\dfrac{u}{|x|^{2s}}+ |\nabla u|^{p}+ μf &\inn Ω,\\ u&>&0 & \innΩ,\\ u&=&0 & \inn(\mathbb{R}^N\setminusΩ), \end{array}\right. $$ where $Ω$ is a $C^{1,1}$ bounded domain in $\mathbb{R}^N$, $N> 2s, μ>0$, $\frac{1}{2}<s<1$, and $0<λ<Λ_{N,s}$ is defined in (3) . We assume that $f$ is a non-negative function with additional hypotheses. As we will see, there are deep differences with respect to the case $λ=0$. More precisely, If $λ>0$, there exists a critical exponent $p_{+}(λ, s)$ such that for $p> p_{+}(λ,s)$ there is no positive solution. Moreover, $p_{+}(λ,s)$ is optimal in the sense that, if $p<p_{+}(λ,s)$ there exists a positive solution for suitable data and $μ$ sufficiently small.