论文标题

一个基于两阶段优化的运动计划者,用于安全城市驾驶

A Two-Stage Optimization-based Motion Planner for Safe Urban Driving

论文作者

Eiras, Francisco, Hawasly, Majd, Albrecht, Stefano V., Ramamoorthy, Subramanian

论文摘要

最近的道路试验表明,保证驾驶决策的安全对于更广泛采用自动驾驶汽车技术至关重要。一个有希望的方向是提出安全要求,因为非线性,非凸优化的运动合成问题的计划限制。但是,这种方法的许多实现受到不确定的融合和实现解决方案的局部最优性的限制,从而影响了整体鲁棒性。为了改善这些问题,我们提出了一个新型的两阶段优化框架:在第一阶段,我们找到了一种混合组合线性编程(MILP)的运动合成问题的解决方案,其输出初始化了第二个非线性编程(NLP)阶段。 MILP阶段实施了安全性和道路规则合规性的严格约束,在正确的子空间中生成解决方案,而NLP阶段则在安全范围内完善了解决方案,以实现可行性和光滑度。我们通过模拟复杂的城市驾驶场景的模拟实验来证明框架的有效性,在融合,舒适性和进步的指标中优于最先进的基线。

Recent road trials have shown that guaranteeing the safety of driving decisions is essential for the wider adoption of autonomous vehicle technology. One promising direction is to pose safety requirements as planning constraints in nonlinear, non-convex optimization problems of motion synthesis. However, many implementations of this approach are limited by uncertain convergence and local optimality of the solutions achieved, affecting overall robustness. To improve upon these issues, we propose a novel two-stage optimization framework: in the first stage, we find a solution to a Mixed-Integer Linear Programming (MILP) formulation of the motion synthesis problem, the output of which initializes a second Nonlinear Programming (NLP) stage. The MILP stage enforces hard constraints of safety and road rule compliance generating a solution in the right subspace, while the NLP stage refines the solution within the safety bounds for feasibility and smoothness. We demonstrate the effectiveness of our framework via simulated experiments of complex urban driving scenarios, outperforming a state-of-the-art baseline in metrics of convergence, comfort and progress.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源