论文标题

相关的分离和分成

Relating Apartness and Bisimulation

论文作者

Geuvers, Herman, Jacobs, Bart

论文摘要

可以通过相关类别的calgebra描述函数类别类别的函子的煤层的分合。然后,最终的山地产生了共同诱导原则,该原理指出两个二型元素相等。对于多项式函子,这导致了众所周知的描述。在本文中,我们查看了“分离”的双重概念。直观地,如果有积极的方式来区分它们,则有两个要素是分开的。换句话说:两个元素是分开的,并且仅当它们不具有偶性时。由于公寓是一个归纳概念,用至少固定点描述,因此我们可以给出一个证明系统,以得出两个要素是分开的。此证明系统具有派生规则,并且只有在此事实的有限推导(使用规则)时,就有两个元素是分开的。 我们以两种不同的方式研究分离与仿真。首先,对于标记的过渡系统上的弱形式的三拟合形式,其中包括无声的(tau)步骤,我们定义了一个与弱分配和另一个与分支分支仿真相对应的公寓概念。公寓的规则可以用来表明标记的过渡系统的两个状态不是分支的bimistar。为了支持标记的过渡系统上的公寓视图,我们在分支分离方面施加了许多众所周知的分支分支性能并证明它们。接下来,我们还研究了更一般的分类状况,并表明,实际上,与确切的分类意义上相比,分离是双重性双重性:分离是最初的代数,并引起了归纳原则。在此类比中,我们包括PowerSet函子,该函数为过程理论中的非确定性选择提供了语义。

A bisimulation for a coalgebra of a functor on the category of sets can be described via a coalgebra in the category of relations, of a lifted functor. A final coalgebra then gives rise to the coinduction principle, which states that two bisimilar elements are equal. For polynomial functors, this leads to well-known descriptions. In the present paper we look at the dual notion of "apartness". Intuitively, two elements are apart if there is a positive way to distinguish them. Phrased differently: two elements are apart if and only if they are not bisimilar. Since apartness is an inductive notion, described by a least fixed point, we can give a proof system, to derive that two elements are apart. This proof system has derivation rules and two elements are apart if and only if there is a finite derivation (using the rules) of this fact. We study apartness versus bisimulation in two separate ways. First, for weak forms of bisimulation on labelled transition systems, where silent (tau) steps are included, we define an apartness notion that corresponds to weak bisimulation and another apartness that corresponds to branching bisimulation. The rules for apartness can be used to show that two states of a labelled transition system are not branching bismilar. To support the apartness view on labelled transition systems, we cast a number of well-known properties of branching bisimulation in terms of branching apartness and prove them. Next, we also study the more general categorical situation and show that indeed, apartness is the dual of bisimilarity in a precise categorical sense: apartness is an initial algebra and gives rise to an induction principle. In this analogy, we include the powerset functor, which gives a semantics to non-deterministic choice in process-theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源