论文标题

动漫:多人3D姿势估计和动画

AnimePose: Multi-person 3D pose estimation and animation

论文作者

Kumarapu, Laxman, Mukherjee, Prerana

论文摘要

人类在行动中的3D动画非常具有挑战性,因为它涉及使用巨大的设置,并在整个人的身体上使用几个运动跟踪器来跟踪每个肢体的运动。这是耗时的,可能会导致人穿着运动传感器穿外骨骼运动服的人。在这项工作中,我们提出了一种琐碎而有效的解决方案,可以使用深度学习从2D视频中生成多个人的3D动画。尽管最近在3D人类姿势估计中取得了显着改善,但在单人姿势估计和多人姿势估计的情况下,大多数先前的作品都可以很好地奏效。在这项工作中,我们首先提出了一个有监督的多人3D姿势估计和动画框架,即给定输入RGB视频序列的动漫。所提出的系统的管道由各种模块组成:i)人检测和分割,ii)深度图估计,iii)将人定位的2d到3D信息提升至3D信息,iv)人轨迹预测和人类姿势跟踪。我们提出的系统在先前最先进的3D多人姿势估计方法上产生了可比的结果。公开可用的数据集Muco-3DHP和Mupots-3D数据集,它还优于先前的最先进的人类姿势跟踪方法,其在Posetrack 2018 DataSetset上的Mota得分为11.7%。

3D animation of humans in action is quite challenging as it involves using a huge setup with several motion trackers all over the person's body to track the movements of every limb. This is time-consuming and may cause the person discomfort in wearing exoskeleton body suits with motion sensors. In this work, we present a trivial yet effective solution to generate 3D animation of multiple persons from a 2D video using deep learning. Although significant improvement has been achieved recently in 3D human pose estimation, most of the prior works work well in case of single person pose estimation and multi-person pose estimation is still a challenging problem. In this work, we firstly propose a supervised multi-person 3D pose estimation and animation framework namely AnimePose for a given input RGB video sequence. The pipeline of the proposed system consists of various modules: i) Person detection and segmentation, ii) Depth Map estimation, iii) Lifting 2D to 3D information for person localization iv) Person trajectory prediction and human pose tracking. Our proposed system produces comparable results on previous state-of-the-art 3D multi-person pose estimation methods on publicly available datasets MuCo-3DHP and MuPoTS-3D datasets and it also outperforms previous state-of-the-art human pose tracking methods by a significant margin of 11.7% performance gain on MOTA score on Posetrack 2018 dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源