论文标题
布尔最佳CSP的最佳多项式时间压缩
Optimal polynomial-time compression for Boolean Max CSP
论文作者
论文摘要
在布尔值最大约束满意度问题中 - 最大CSP $(γ)$ - 在一个共同的变量集上,从有限约束语言$γ$中给出了约束的加权应用程序的集合,目标是将Boolean值分配给变量,以使满意约束的总权能最大化。存在一个优雅的二分法定理,为$γ$提供标准,以使该问题是多项式时间溶剂,并指出否则它会变成NP-HARD。我们通过内核化镜头研究NP硬病例,并相对于最佳压缩大小提供了最大CSP $(γ)$的完整表征。也就是说,我们证明,最大CSP $(γ)$由变量数量$ n $参数化的是多项式时间可溶解,或者存在一个整数$ d \ ge 2 $,具体取决于$γ$,以便以至于 1。\ textsc {max csp $(γ)$}的实例可以被压缩到等价实例中,并在多项式时间内用$ o(n^d \ log n)$ bits, 2。最大csp $(γ)$不承认这种压缩为$ O(n^{d-am})$ bits,除非$ \ text {np} \ subseteq \ subseteq \ text {co-np} / \ text {co-np} / \ text {poly} $。 我们的减少是基于将约束解释为多项式多项式与约束实现框架相结合的。作为我们减少的另一种应用,我们揭示了解决最大CSP $(γ)$的最佳运行时间之间的紧密连接。更确切地说,我们表明,对于特定类别的最大CSP,获得$ o(2^{(1-ε)n})$的运行时间与违反此障碍的最大$ d $ -sat一样困难。
In the Boolean maximum constraint satisfaction problem - Max CSP$(Γ)$ - one is given a collection of weighted applications of constraints from a finite constraint language $Γ$, over a common set of variables, and the goal is to assign Boolean values to the variables so that the total weight of satisfied constraints is maximized. There exists an elegant dichotomy theorem providing a criterion on $Γ$ for the problem to be polynomial-time solvable and stating that otherwise it becomes NP-hard. We study the NP hard cases through the lens of kernelization and provide a complete characterization of Max CSP$(Γ)$ with respect to the optimal compression size. Namely, we prove that Max CSP$(Γ)$ parameterized by the number of variables $n$ is either polynomial-time solvable, or there exists an integer $d \ge 2$ depending on $Γ$, such that 1. An instance of \textsc{Max CSP$(Γ)$} can be compressed into an equivalent instance with $O(n^d\log n)$ bits in polynomial time, 2. Max CSP$(Γ)$ does not admit such a compression to $O(n^{d-ε})$ bits unless $\text{NP} \subseteq \text{co-NP} / \text{poly}$. Our reductions are based on interpreting constraints as multilinear polynomials combined with the framework of constraint implementations. As another application of our reductions, we reveal tight connections between optimal running times for solving Max CSP$(Γ)$. More precisely, we show that obtaining a running time of the form $O(2^{(1-ε)n})$ for particular classes of Max CSPs is as hard as breaching this barrier for Max $d$-SAT for some $d$.