论文标题

01损失的强大二进制分类

Robust binary classification with the 01 loss

论文作者

Xue, Yunzhe, Xie, Meiyan, Roshan, Usman

论文摘要

与凸损失函数相比,01损失对离群值是强大的,并且对噪声数据的耐受性宽容。我们猜想01损失对对抗性攻击也可能更强大。从经验上讲,我们为线性01损耗分类器和单个隐藏层01损耗神经网络开发了随机坐标下降算法。由于缺乏梯度,我们在数据的随机子集上迭代更新固定时期的坐标。我们显示我们的算法的准确性与线性支持向量机和逻辑损耗单个隐藏层网络的准确性快速,可与几个图像基准分类进行二进制分类,从而确定我们的方法在凸丢失的测试准确性方面具有出色的优势。然后,我们对它们进行精确训练的替代模型黑匣子攻击在同一图像基准上攻击,并发现它们比凸形配对更强大。在CIFAR10二进制分类任务上,类别为0和1,对抗扰动为0.0625,我们看到MLP01网络的准确性损失了27 \%,而MLP逻辑性对应物损失了83 \%。同样,在类别0和1之间的STL10和Imagenet二进制分类上,MLP01网络损失了21 \%和20 \%,而MLP逻辑性分别损失了67 \%和45 \%。在MNIST上,这是一个分离良好的数据集,我们发现MLP01与MLP-Logistic相当,并在模拟下显示了我们的01损耗求解器在那里如何以及为什么在那里不那么强大。然后,我们建议对线性01损耗求解器进行对抗训练,从而显着提高其对MNIST和所有其他数据集的鲁棒性,并保留清洁测试的准确性。最后,我们展示了我们方法的实际应用,以阻止交通标志和面部识别对抗性攻击。我们讨论了01损失,替代模型准确性以及多种途径,例如多类,01损失卷积和进一步的对抗训练,讨论了攻击。

The 01 loss is robust to outliers and tolerant to noisy data compared to convex loss functions. We conjecture that the 01 loss may also be more robust to adversarial attacks. To study this empirically we have developed a stochastic coordinate descent algorithm for a linear 01 loss classifier and a single hidden layer 01 loss neural network. Due to the absence of the gradient we iteratively update coordinates on random subsets of the data for fixed epochs. We show our algorithms to be fast and comparable in accuracy to the linear support vector machine and logistic loss single hidden layer network for binary classification on several image benchmarks, thus establishing that our method is on-par in test accuracy with convex losses. We then subject them to accurately trained substitute model black box attacks on the same image benchmarks and find them to be more robust than convex counterparts. On CIFAR10 binary classification task between classes 0 and 1 with adversarial perturbation of 0.0625 we see that the MLP01 network loses 27\% in accuracy whereas the MLP-logistic counterpart loses 83\%. Similarly on STL10 and ImageNet binary classification between classes 0 and 1 the MLP01 network loses 21\% and 20\% while MLP-logistic loses 67\% and 45\% respectively. On MNIST that is a well-separable dataset we find MLP01 comparable to MLP-logistic and show under simulation how and why our 01 loss solver is less robust there. We then propose adversarial training for our linear 01 loss solver that significantly improves its robustness on MNIST and all other datasets and retains clean test accuracy. Finally we show practical applications of our method to deter traffic sign and facial recognition adversarial attacks. We discuss attacks with 01 loss, substitute model accuracy, and several future avenues like multiclass, 01 loss convolutions, and further adversarial training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源