论文标题

在EDXRF光谱上具有多目标堆积的土壤特性的改进预测

Improved prediction of soil properties with Multi-target Stacked Generalisation on EDXRF spectra

论文作者

Santana, Everton Jose, Santos, Felipe Rodrigues dos, Mastelini, Saulo Martiello, Melquiades, Fabio Luiz, Barbon Jr, Sylvio

论文摘要

机器学习(ML)算法已用于评估土壤质量参数以及非破坏性方法。在光谱分析方法中,与常规方法相比,能量色散X射线荧光(EDXRF)是更快,环保且价格更便宜的一种。但是,EDXRF光谱数据分析中的一些挑战仍然需要更有效的方法,能够提供准确的结果。使用多目标回归(MTR)方法,可以预测多个参数,并且还利用相关参数可以提高整体预测性能。在这项研究中,我们提出了多目标堆叠的概括(MTSG),这是一种新型的MTR方法,依赖于从堆叠结构中排列的不同回归变量中学习以提高结果。我们比较了MTSG和5种MTR方法,以预测10种土壤生育能力。随机森林和支撑矢量机(带线性和径向内核)用作嵌入每种MTR方法中的学习算法。结果表明,MTR方法优于单目标回归(传统ML方法),从而减少了5个参数的预测误差。特别是,MTSG获得了磷,总有机碳和阳离子交换能力的最低误差。当观察径向核的支持矢量机的相对性能时,基础饱和百分比的预测得到了19%的提高。最后,所提出的方法能够将平均误差从0.67(单目标)降低到0.64,分析所有目标,代表4.48%的全球提高。

Machine Learning (ML) algorithms have been used for assessing soil quality parameters along with non-destructive methodologies. Among spectroscopic analytical methodologies, energy dispersive X-ray fluorescence (EDXRF) is one of the more quick, environmentally friendly and less expensive when compared to conventional methods. However, some challenges in EDXRF spectral data analysis still demand more efficient methods capable of providing accurate outcomes. Using Multi-target Regression (MTR) methods, multiple parameters can be predicted, and also taking advantage of inter-correlated parameters the overall predictive performance can be improved. In this study, we proposed the Multi-target Stacked Generalisation (MTSG), a novel MTR method relying on learning from different regressors arranged in stacking structure for a boosted outcome. We compared MTSG and 5 MTR methods for predicting 10 parameters of soil fertility. Random Forest and Support Vector Machine (with linear and radial kernels) were used as learning algorithms embedded into each MTR method. Results showed the superiority of MTR methods over the Single-target Regression (the traditional ML method), reducing the predictive error for 5 parameters. Particularly, MTSG obtained the lowest error for phosphorus, total organic carbon and cation exchange capacity. When observing the relative performance of Support Vector Machine with a radial kernel, the prediction of base saturation percentage was improved in 19%. Finally, the proposed method was able to reduce the average error from 0.67 (single-target) to 0.64 analysing all targets, representing a global improvement of 4.48%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源