论文标题

通过正规张量分解在混合物多层网络上的社区检测

Community Detection on Mixture Multi-layer Networks via Regularized Tensor Decomposition

论文作者

Jing, Bing-Yi, Li, Ting, Lyu, Zhongyuan, Xia, Dong

论文摘要

我们研究了多层网络中社区检测的问题,其中一对节点可以以多种方式相关。我们引入了一个通用框架,即混合物多层随机块模型(MMSBM),其中包括许多早期模型作为特殊情况。我们提出了一种基于张量的算法(Twist),以揭示节点的全球/本地成员资格和层的成员资格。我们表明,随着节点的数量和/或层数的增加,扭曲过程可以准确地检测出较小的错误分类误差的社区。数值研究证实了我们的理论发现。据我们所知,这是对混合物多层网络进行张量分解的首次系统研究。该方法应用于两个真实数据集:全球交易网络和疟疾寄生虫基因网络,产生了新的有趣发现。

We study the problem of community detection in multi-layer networks, where pairs of nodes can be related in multiple modalities. We introduce a general framework, i.e., mixture multi-layer stochastic block model (MMSBM), which includes many earlier models as special cases. We propose a tensor-based algorithm (TWIST) to reveal both global/local memberships of nodes, and memberships of layers. We show that the TWIST procedure can accurately detect the communities with small misclassification error as the number of nodes and/or the number of layers increases. Numerical studies confirm our theoretical findings. To our best knowledge, this is the first systematic study on the mixture multi-layer networks using tensor decomposition. The method is applied to two real datasets: worldwide trading networks and malaria parasite genes networks, yielding new and interesting findings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源