论文标题
信息长度是了解全球循环中可变性的有用指数
Information length as a useful index to understand variability in the global circulation
论文作者
论文摘要
随着测量和建模技术的改进,变异性已成为非平衡过程中的重要特征。尽管传统上,平均值和差异已被大量使用,但在描述经常发生显着偏差的极端事件中,它们不合适。此外,固定概率密度函数(PDFS)错过了有关与变异性相关的动态的关键信息。因此,超越传统方法并应对时间依赖的PDF至关重要。在这里,我们考虑了来自整个大气社区气候模型(WACCM)模型的大气数据,并计算时间依赖时间的PDF以及来自这些PDF的信息长度,这是系统随时间通过的统计上不同状态的总数。时间依赖性的PDF通常是非高斯的,从这些PDF中计算出的信息长度使我们有了了解变化,不同变量和区域之间相关性的新观点。具体而言,我们计算时间依赖于时间的PDF和信息长度,并表明信息长度往往随海拔高度增加而增加。这种趋势比温度更适合流量/剪切。同样,与温度相比,发现信息长度的流和剪切之间的相似之处很大。这些结果还表明,高纬度/高度在地球大气中的信息BUDGE中的重要性,该信息的空间梯度是物理量运输的有用代理。
With improved measurement and modelling technology, variability has emerged as an essential feature in non-equilibrium processes. While traditionally, mean values and variance have been heavily used, they are not appropriate in describing extreme events where a significant deviation from mean values often occurs. Furthermore, stationary Probability Density Functions (PDFs) miss crucial information about the dynamics associated with variability. It is thus critical to go beyond a traditional approach and deal with time-dependent PDFs. Here, we consider atmospheric data from the Whole Atmosphere Community Climate Model (WACCM) model and calculate time-dependent PDFs and the information length from these PDFs, which is the total number of statistically different states that a system passes through in time. Time-dependent PDFs are shown to be non-Gaussian in general, and the information length calculated from these PDFs shed us a new perspective of understanding variabilities, correlation among different variables and regions. Specifically, we calculate time-dependent PDFs and information length and show that the information length tends to increase with the altitude albeit in a complex form. This tendency is more robust for flows/shears than temperature. Also, much similarity among flows and shears in the information length is found in comparison with the temperature. These results also suggest the importance of high latitude/altitude in the information budge in the Earth's atmosphere, the spatial gradient of the information as a useful proxy for the transport of physical quantities.