论文标题
看门狗:地理分布的边缘节点上的实时车辆跟踪
WatchDog: Real-time Vehicle Tracking on Geo-distributed Edge Nodes
论文作者
论文摘要
车辆跟踪是智能城市视频分析的核心应用程序,由于交通摄像机数量的增加以及计算机视觉和机器学习的最新进展,它比以往任何时候都变得更加广泛。由于带宽,延迟和隐私问题的限制,跟踪任务更可取,而不是在靠近相机的边缘设备上运行。但是,边缘设备由固定数量的计算预算提供,使它们无法适应由流量动态引起的随时间变化的跟踪工作负载。在应对这一挑战时,我们提出了看门狗,一个实时车辆跟踪系统充分利用了整个道路网络的边缘节点。看门狗通过不同的资源准确性权衡取消计算机视觉任务,并根据当前工作负载明智地分解和安排在边缘设备上进行跟踪任务,以最大化任务的数量,同时确保每个边缘设备上可证明的响应时间。已经使用现实世界中城市范围的车辆轨迹数据集进行了广泛的评估,显示了100%跟踪覆盖范围并提供实时保证。
Vehicle tracking, a core application to smart city video analytics, is becoming more widely deployed than ever before thanks to the increasing number of traffic cameras and recent advances of computer vision and machine learning. Due to the constraints of bandwidth, latency, and privacy concerns, tracking tasks are more preferable to run on edge devices sitting close to the cameras. However, edge devices are provisioned with a fixed amount of compute budget, making them incompetent to adapt to time-varying tracking workloads caused by traffic dynamics. In coping with this challenge, we propose WatchDog, a real-time vehicle tracking system fully utilizes edge nodes across the road network. WatchDog leverages computer vision tasks with different resource-accuracy trade-offs, and decompose and schedule tracking tasks judiciously across edge devices based on the current workload to maximize the number of tasks while ensuring a provable response time bound at each edge device. Extensive evaluations have been conducted using real-world city-wide vehicle trajectory datasets, showing a 100% tracking coverage with real-time guarantee.