论文标题

骰子准粒子在振荡量子点上的共振散射

Resonant scattering of Dice quasiparticles on oscillating quantum dots

论文作者

Filusch, Alexander, Wurl, Christian, Fehske, Holger

论文摘要

我们考虑了一个骰子模型,该模型在电荷中立点与拓扑平面带相交,并在圆形的,闸门定义的,振荡的屏障上分析无质量假蛋白-1颗粒的非弹性散射。为了关注入射波的较小能量的谐振散射状态,我们计算了反射和透射系数,并在(floquet)dirac-weyl理论(在近场和远处)内(floquet)Dirac-weyl理论中为时间依赖的粒子概率,电流密度和散射效率提供明显的表达。我们讨论了量子限制中边带散射和FANO共振的重要性。当满足共振条件时,粒子会暂时将其捕获在量子点的边缘附近的涡旋中,然后才能重新提交强角依赖性。有趣的是,即使是定期交替的,也可能发生向前和向后辐射。我们还证明了与特定的梭形边界陷阱曲线相关的谐振散射的复兴。

We consider a Dice model with Dirac cones intersected by a topologically flat band at the charge neutrality point and analyze the inelastic scattering of massless pseudospin-1 particles on a circular, gate-defined, oscillating barrier. Focusing on the resonant scattering regime at small energy of the incident wave, we calculate the reflection and transmission coefficients and derive explicit expressions for the time-dependent particle probability, current density and scattering efficiency within (Floquet) Dirac-Weyl theory, both in the near-field and the far-field. We discuss the importance of sideband scattering and Fano resonances in the quantum limit. When resonance conditions are fulfilled, the particle is temporarily trapped in vortices located close to edge of the quantum dot before it gets resubmitted with strong angular dependence. Interestingly even periodically alternating forward and backward radiation may occur. We also demonstrate the revival of resonant scattering related to specific fusiform boundary trapping profiles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源