论文标题

快速:使用神经网络从历史图像中近实时宠物重建

FastPET: Near Real-Time PET Reconstruction from Histo-Images Using a Neural Network

论文作者

Whiteley, William, Panin, Vladimir, Zhou, Chuanyu, Cabello, Jorge, Bharkhada, Deepak, Gregor, Jens

论文摘要

使用深神经网络直接重建正电子发射断层扫描(PET)数据是一个越来越多的研究领域。初始结果是有希望的,但是网络通常很复杂,内存利用率降低,产生相对较小的2D图像切片(例如128x128),低计数率重建的质量不同。本文提出了一种新型的直接重建卷积神经网络Fastpet,它在架构上是简单的,记忆空间的效率,适用于非平凡的3D图像量,并且能够处理包括低剂量和多剂量应用程序在内的大量PET数据。 FastPet唯一地在原始数据的历史图像(即图像空间)表示上进行操作,从而使其能够比订购的子集预期最大化(OSEM)快67倍重建3D图像量。我们详细介绍了对全身和低剂量全身数据集训练的快速方法,并探讨了临床和幻影研究中重建图像的定性和定量方面。此外,我们探讨了FastPET在包含多个不同示踪剂的神经病学数据集中的应用。结果表明,不仅重建非常快,而且图像是高质量和低噪声,而不是迭代重建。

Direct reconstruction of positron emission tomography (PET) data using deep neural networks is a growing field of research. Initial results are promising, but often the networks are complex, memory utilization inefficient, produce relatively small 2D image slices (e.g., 128x128), and low count rate reconstructions are of varying quality. This paper proposes FastPET, a novel direct reconstruction convolutional neural network that is architecturally simple, memory space efficient, works for non-trivial 3D image volumes and is capable of processing a wide spectrum of PET data including low-dose and multi-tracer applications. FastPET uniquely operates on a histo-image (i.e., image-space) representation of the raw data enabling it to reconstruct 3D image volumes 67x faster than Ordered subsets Expectation Maximization (OSEM). We detail the FastPET method trained on whole-body and low-dose whole-body data sets and explore qualitative and quantitative aspects of reconstructed images from clinical and phantom studies. Additionally, we explore the application of FastPET on a neurology data set containing multiple different tracers. The results show that not only are the reconstructions very fast, but the images are high quality and lower noise than iterative reconstructions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源