论文标题

城市社区电动汽车充电站网络设计的两阶段随机选择建模方法

Two-Stage Stochastic Choice Modeling Approach for Electric Vehicle Charging Station Network Design in Urban Communities

论文作者

Fazeli, Seyed Sajjad, Venkatachalam, Saravanan, Chinnam, Ratna Babu, Murat, Alper

论文摘要

电动汽车(EV)提供了一种更清洁的替代方案,不仅可以减少温室气体排放,还可以改善空气质量并减少噪声污染。电动汽车的消费市场正在迅速增长。设计具有足够能力和类型的公共充电站的网络是一个挑战,需要解决以支持电动汽车市场的当前趋势。在这项研究中,我们提出了一种嵌入在两个阶段随机编程模型中的选择建模方法,以确定社区的最佳布局和EV供应设备的类型,同时考虑需求和驱动程序的行为的随机性。本研究中考虑的一些关键随机数据参数是:电动汽车在停车场的停留时间{\ sv location},电池的充电状态,离家距离,愿意走路的意愿,驾驶员的到达模式以及工作日和周末的交通。两阶段模型使用样本平均近似方法,该方法渐近地收敛到最佳解决方案。为了应对大规模实例的计算挑战,我们提出了外部近似分解算法。我们进行了广泛的计算实验,以量化所提出方法的功效。此外,我们为基于公共可用数据源的案例研究提供了结果和敏感性分析。

Electric vehicles (EVs) provide a cleaner alternative that not only reduces greenhouse gas emissions but also improves air quality and reduces noise pollution. The consumer market for electrical vehicles is growing very rapidly. Designing a network with adequate capacity and types of public charging stations is a challenge that needs to be addressed to support the current trend in the EV market. In this research, we propose a choice modeling approach embedded in a two-stage stochastic programming model to determine the optimal layout and types of EV supply equipment for a community while considering randomness in demand and drivers' behaviors. Some of the key random data parameters considered in this study are: EV's dwell time at parking {\sv location}, battery's state of charge, distance from home, willingness to walk, drivers' arrival patterns, and traffic on weekdays and weekends. The two-stage model uses the sample average approximation method, which asymptotically converges to an optimal solution. To address the computational challenges for large-scale instances, we propose an outer approximation decomposition algorithm. We conduct extensive computational experiments to quantify the efficacy of the proposed approach. In addition, we present the results and a sensitivity analysis for a case study based on publicly available data sources.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源