论文标题
任务感知的各种对抗性积极学习
Task-Aware Variational Adversarial Active Learning
论文作者
论文摘要
通常,由于高标签成本限制了深度学习技术的应用领域,因此对大量数据进行标记是具有挑战性的。主动学习(AL)通过查询未标记池中注释的最有用的样本来解决此问题。最近探索的AL的两个有希望的方向是任务无关的方法,可以选择远离当前标记的池和任务感知方法的数据点,这些方法依赖于任务模型的观点。不幸的是,前者并未从任务中利用结构,而后者似乎并未充分利用整体数据分布。在这里,我们建议通过将任务学习损失预测放宽对排名损失预测和使用等级的有条件的归一化归一化等级损失信息,来修改任务 - 静脉台上的vaal(ta-vaal),以修改任务无关的vaal,该任务无关紧要的vaal(ta-vaal)考虑了标签和未标记池的数据分布。我们提出的TA-VAAL优于各种基准数据集上的最先进的方法,用于使用平衡 /不平衡标签以及语义分割及其任务意识和任务范围的AL属性进行分类,并通过我们的深入分析确认了。
Often, labeling large amount of data is challenging due to high labeling cost limiting the application domain of deep learning techniques. Active learning (AL) tackles this by querying the most informative samples to be annotated among unlabeled pool. Two promising directions for AL that have been recently explored are task-agnostic approach to select data points that are far from the current labeled pool and task-aware approach that relies on the perspective of task model. Unfortunately, the former does not exploit structures from tasks and the latter does not seem to well-utilize overall data distribution. Here, we propose task-aware variational adversarial AL (TA-VAAL) that modifies task-agnostic VAAL, that considered data distribution of both label and unlabeled pools, by relaxing task learning loss prediction to ranking loss prediction and by using ranking conditional generative adversarial network to embed normalized ranking loss information on VAAL. Our proposed TA-VAAL outperforms state-of-the-arts on various benchmark datasets for classifications with balanced / imbalanced labels as well as semantic segmentation and its task-aware and task-agnostic AL properties were confirmed with our in-depth analyses.