论文标题
在本地设备或远程边缘服务器上进行自适应任务分区,用于在MEC中卸载
Adaptive Task Partitioning at Local Device or Remote Edge Server for Offloading in MEC
论文作者
论文摘要
移动边缘计算(MEC)是处理新兴时间关键时间互联网(IoT)用例,例如虚拟现实(VR),增强现实(AR),自动驾驶汽车的有前途的解决方案之一。当任务被多个边缘服务器(ESS)协作分区和计算时,可以进一步降低延迟。但是,最先进的工作研究了基于静态框架的MEC卸载,该框架在本地用户设备(UE)或主要ES上分配了任务。两个卸载方案之间的动态选择尚未得到很好的研究。在本文中,我们研究了多用户方案中的动态卸载框架。每个UE可以根据网络状态(例如渠道质量和分配的计算资源)决定谁将任务分配。基于框架,我们对完成任务的延迟进行建模,并制定优化问题,以最大程度地减少UES之间的平均延迟。通过共同优化任务分配以及通信和计算资源的分配来解决该问题。数值结果表明,与静态卸载方案相比,所提出的算法在所有测试的方案中都达到了较低的延迟。此外,数学推导和模拟都说明了UE和不同ESS之间的无线通道质量差异可以用作确定正确方案的重要标准。
Mobile edge computing (MEC) is one of the promising solutions to process computational-intensive tasks for the emerging time-critical Internet-of-Things (IoT) use cases, e.g., virtual reality (VR), augmented reality (AR), autonomous vehicle. The latency can be reduced further, when a task is partitioned and computed by multiple edge servers' (ESs) collaboration. However, the state-of-the-art work studies the MEC-enabled offloading based on a static framework, which partitions tasks at either the local user equipment (UE) or the primary ES. The dynamic selection between the two offloading schemes has not been well studied yet. In this paper, we investigate a dynamic offloading framework in a multi-user scenario. Each UE can decide who partitions a task according to the network status, e.g., channel quality and allocated computation resource. Based on the framework, we model the latency to complete a task, and formulate an optimization problem to minimize the average latency among UEs. The problem is solved by jointly optimizing task partitioning and the allocation of the communication and computation resources. The numerical results show that, compared with the static offloading schemes, the proposed algorithm achieves the lower latency in all tested scenarios. Moreover, both mathematical derivation and simulation illustrate that the wireless channel quality difference between a UE and different ESs can be used as an important criterion to determine the right scheme.