论文标题

HI-NET:用于多模式MR图像合成的混合融合网络

Hi-Net: Hybrid-fusion Network for Multi-modal MR Image Synthesis

论文作者

Zhou, Tao, Fu, Huazhu, Chen, Geng, Shen, Jianbing, Shao, Ling

论文摘要

磁共振成像(MRI)是一种广泛使用的神经影像学技术,可以提供不同对比度(即模态)的图像。融合此多模式数据已被证明在许多任务中提高模型性能特别有效。但是,由于数据质量差和频繁的患者辍学,为每个患者收集所有方式仍然是一个挑战。已经提出了医学图像合成作为对此的有效解决方案,其中任何缺失的模式都是从现有的模式中综合的。在本文中,我们提出了一个新型的混合融合网络(HI-NET),用于多模式MR图像合成,该网络从多模式源图像(即现有模态)中学习了映射到目标图像(即缺失模态)。在我们的HI-NET中,使用特定于模态的网络来学习每种单独的模式的表示形式,并采用融合网络来学习多模式数据的常见潜在表示。然后,多模式合成网络旨在将潜在表示与每种模式的层次特征密集地结合在一起,充当合成目标图像的生成器。此外,提出了层次多模式的融合策略,以有效利用多种方式之间的相关性,其中提出了混合融合块(MFB)以适应性重量不同的不同融合策略(即元素求和,产品和最大化)。广泛的实验表明,所提出的模型优于其他最先进的医学图像合成方法。

Magnetic resonance imaging (MRI) is a widely used neuroimaging technique that can provide images of different contrasts (i.e., modalities). Fusing this multi-modal data has proven particularly effective for boosting model performance in many tasks. However, due to poor data quality and frequent patient dropout, collecting all modalities for every patient remains a challenge. Medical image synthesis has been proposed as an effective solution to this, where any missing modalities are synthesized from the existing ones. In this paper, we propose a novel Hybrid-fusion Network (Hi-Net) for multi-modal MR image synthesis, which learns a mapping from multi-modal source images (i.e., existing modalities) to target images (i.e., missing modalities). In our Hi-Net, a modality-specific network is utilized to learn representations for each individual modality, and a fusion network is employed to learn the common latent representation of multi-modal data. Then, a multi-modal synthesis network is designed to densely combine the latent representation with hierarchical features from each modality, acting as a generator to synthesize the target images. Moreover, a layer-wise multi-modal fusion strategy is presented to effectively exploit the correlations among multiple modalities, in which a Mixed Fusion Block (MFB) is proposed to adaptively weight different fusion strategies (i.e., element-wise summation, product, and maximization). Extensive experiments demonstrate that the proposed model outperforms other state-of-the-art medical image synthesis methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源