论文标题

计算3-D中平均宽度的Shapley值

Computing Shapley Values for Mean Width in 3-D

论文作者

Tan, Shuhao

论文摘要

沙普利价值是游戏理论中的一种常见工具,可以评估玩家在合作环境中的重要性。在几何环境中,它提供了一种方法,可以测量集合中对集合某些功能的几何对象的贡献。最近,Cabello和Chan(SOCG 2019)提出了用于计算飞机上点集的许多功能的Shapley值的算法。更正式的是,联盟游戏由一组玩家$ n $和一个特征函数$ v:2^n \ to \ mathbb {r} $,带有$ v(\ emptyset)= 0 $。令$π$为$ n $的均匀随机排列,而$ p_n(π,i)$是$ n $中出现在pressuntuntun $π$中的$ n $中的玩家。游戏的莎普利值定义为$ ϕ(i)= \ mathbb {e}_π[v(p_n(π,i)\ cup \ {i \}) - v(p_n(p_n(π,i))] $。更直观地,Shapley值代表了Player $ i $外观对所有插入订单的影响。我们提出了一种算法来计算3-D中的Shapley值,在该算法中,我们将点视为参与者,并使用凸船体的平均宽度作为特征函数。我们的算法以$ o(n^3 \ log^2 {n})$时间和$ o(n)$ space运行。我们的方法基于动态卷积问题$(u,v,p)$变体的新数据结构,我们想动态地回答$ u \ cdot v $。我们的数据结构支持在位置$ p $上更新$ u $,从而增加$ p $,并旋转$ v $ $ 1 $。我们提出了一个支持$ n $ operations $ o(n \ log^2 {n})$ time和$ o(n)$ space中的数据结构。此外,可以使用相同的方法来计算凸壳投影的平均体积的shapley值,以均匀随机$(d-2)$ - $ O(n^d \ log^2 {n})$ o(n^d \ log^2 {n})$ time和$ o(n)$($ o(n)$空间的点为$ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ geq 3 $)。

The Shapley value is a common tool in game theory to evaluate the importance of a player in a cooperative setting. In a geometric context, it provides a way to measure the contribution of a geometric object in a set towards some function on the set. Recently, Cabello and Chan (SoCG 2019) presented algorithms for computing Shapley values for a number of functions for point sets in the plane. More formally, a coalition game consists of a set of players $N$ and a characteristic function $v: 2^N \to \mathbb{R}$ with $v(\emptyset) = 0$. Let $π$ be a uniformly random permutation of $N$, and $P_N(π, i)$ be the set of players in $N$ that appear before player $i$ in the permutation $π$. The Shapley value of the game is defined to be $ϕ(i) = \mathbb{E}_π[v(P_N(π, i) \cup \{i\}) - v(P_N(π, i))]$. More intuitively, the Shapley value represents the impact of player $i$'s appearance over all insertion orders. We present an algorithm to compute Shapley values in 3-D, where we treat points as players and use the mean width of the convex hull as the characteristic function. Our algorithm runs in $O(n^3\log^2{n})$ time and $O(n)$ space. Our approach is based on a new data structure for a variant of the dynamic convolution problem $(u, v, p)$, where we want to answer $u\cdot v$ dynamically. Our data structure supports updating $u$ at position $p$, incrementing and decrementing $p$ and rotating $v$ by $1$. We present a data structure that supports $n$ operations in $O(n\log^2{n})$ time and $O(n)$ space. Moreover, the same approach can be used to compute the Shapley values for the mean volume of the convex hull projection onto a uniformly random $(d - 2)$-subspace in $O(n^d\log^2{n})$ time and $O(n)$ space for a point set in $d$-dimensional space ($d \geq 3$).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源