论文标题

计数遥感图像中的密集对象

Counting dense objects in remote sensing images

论文作者

Gao, Guangshuai, Liu, Qingjie, Wang, Yunhong

论文摘要

从给定图像估算准确数量的感兴趣对象是一项具有挑战性但重要的任务。已经做出了重大努力来解决这个问题并取得巨大的进步,但是几乎没有研究遥感图像中的地面物体数量。在本文中,我们有兴趣从遥感图像计数密集的对象。与自然场景中的对象计数相比,此任务在以下因素中具有挑战性:大规模变化,复杂的背景和方向任意性。更重要的是,数据稀缺严重限制了该领域的研究的发展。为了解决这些问题,我们首先根据遥感图像构建一个大规模对象,计算数据集,其中包含四种对象:建筑物,港口拥挤的船只,大型车辆和停车场的小型车辆。然后,我们通过设计一个可以生成输入图像的密度图的新型神经网络来基准数据集。提出的网络由三个部分组成,即卷积块注意模块(CBAM),比例金字塔模块(SPM)和可变形卷积模块(DCM)。对拟议数据集的实验和与最新方法的比较证明了拟议数据集的挑战,以及我们方法的优越性和有效性。

Estimating accurate number of interested objects from a given image is a challenging yet important task. Significant efforts have been made to address this problem and achieve great progress, yet counting number of ground objects from remote sensing images is barely studied. In this paper, we are interested in counting dense objects from remote sensing images. Compared with object counting in natural scene, this task is challenging in following factors: large scale variation, complex cluttered background and orientation arbitrariness. More importantly, the scarcity of data severely limits the development of research in this field. To address these issues, we first construct a large-scale object counting dataset based on remote sensing images, which contains four kinds of objects: buildings, crowded ships in harbor, large-vehicles and small-vehicles in parking lot. We then benchmark the dataset by designing a novel neural network which can generate density map of an input image. The proposed network consists of three parts namely convolution block attention module (CBAM), scale pyramid module (SPM) and deformable convolution module (DCM). Experiments on the proposed dataset and comparisons with state of the art methods demonstrate the challenging of the proposed dataset, and superiority and effectiveness of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源