论文标题
在无限波导上稳定恢复Schrödinger方程的非紧密支撑系数
Stable recovery of a non-compactly supported coefficient of a Schrödinger equation on an infinite waveguide
论文作者
论文摘要
我们研究了确定在无限圆柱波导上定义的schrödinger方程中出现系数的反问题的稳定性问题。更确切地说,我们证明了某些一般类别的非紧密和非周期性系数的稳定恢复出现在无限的圆柱体结构域中。我们考虑了与所谓的Dirichlet到Neumann Map相关的完整和部分边界测量结果的稳定结果。据我们所知,我们的结果是稳定恢复无限域中椭圆方程的此类系数的第一个结果。
We study the stability issue for the inverse problem of determining a coefficient appearing in a Schrödinger equation defined on an infinite cylindrical waveguide. More precisely, we prove the stable recovery of some general class of non-compactly and non periodic coefficients appearing in an unbounded cylindrical domain. We consider both results of stability from full and partial boundary measurements associated with the so called Dirichlet-to-Neumann map. To the best of our knowledge, our results are the first results of stable recovery of such class of coefficients for an elliptic equation in an unbounded domain.