论文标题
kerr-ads的矢量扰动$ _5 $和painlevévi超越
Vector perturbations of Kerr-AdS$_5$ and the Painlevé VI transcendent
论文作者
论文摘要
我们分析了麦克斯韦方程的可分离性在一般旋转的五维kerr-ads黑洞中。我们发现,O. lunin在先前的工作中引入的参数可以解释为所得径向和角方程的明显奇异性。使用异构体变形,我们描述了系统的非线性对称性,在该对称性上与PainlevéVI超验有关。通过翻译在单模式数据方面对准模式的方程溶液施加的边界条件,我们找到了一种修复μ和研究准模式的行为的程序,以快速旋转的小黑洞的极限。
We analyze the Ansatz of separability for Maxwell equations in generically spinning, five-dimensional Kerr-AdS black holes. We find that the parameter μintroduced in a previous work by O. Lunin can be interpreted as apparent singularities of the resulting radial and angular equations. Using isomonodromy deformations, we describe a non-linear symmetry of the system, under which μis tied to the Painlevé VI transcendent. By translating the boundary conditions imposed on the solutions of the equations for quasinormal modes in terms of monodromy data, we find a procedure to fix μand study the behavior of the quasinormal modes in the limit of fast spinning small black holes.