论文标题

在峰值神经网络中使用分段概率最大化学习的有效AER对象分类

Effective AER Object Classification Using Segmented Probability-Maximization Learning in Spiking Neural Networks

论文作者

Liu, Qianhui, Ruan, Haibo, Xing, Dong, Tang, Huajin, Pan, Gang

论文摘要

与传统的基于框架的摄像机相比,由于高时间分辨率和低功耗的优势,地址事件表示(AER)摄像机最近引起了更多的关注。由于AER摄像机将视觉输入记录为异步离散事件,因此它们固有地适合与尖峰神经网络(SNN)协调,该网络(SNN)在生物学上是合理的,并且在神经形态硬件上具有能效。但是,由于缺乏这种新表示形式的有效学习算法,使用SNN执行AER对象分类仍然具有挑战性。为了解决此问题,我们建议使用新型分段概率最大化(SPA)学习算法提出AER对象分类模型。从技术上讲,1)为了提高神经元反应的可靠性和学习的有效性,Spa学习算法迭代迭代地最大程度地提高了样本所属于的类的概率; 2)在水疗中引入了峰值检测(PD)机制,以根据整个事件流中的信息可以通过学习中的哪些信息来完全利用。广泛的实验结果表明,与最先进的方法相比,我们的模型不仅更有效,而且需要更少的信息才能达到一定水平的准确性。

Address event representation (AER) cameras have recently attracted more attention due to the advantages of high temporal resolution and low power consumption, compared with traditional frame-based cameras. Since AER cameras record the visual input as asynchronous discrete events, they are inherently suitable to coordinate with the spiking neural network (SNN), which is biologically plausible and energy-efficient on neuromorphic hardware. However, using SNN to perform the AER object classification is still challenging, due to the lack of effective learning algorithms for this new representation. To tackle this issue, we propose an AER object classification model using a novel segmented probability-maximization (SPA) learning algorithm. Technically, 1) the SPA learning algorithm iteratively maximizes the probability of the classes that samples belong to, in order to improve the reliability of neuron responses and effectiveness of learning; 2) a peak detection (PD) mechanism is introduced in SPA to locate informative time points segment by segment, based on which information within the whole event stream can be fully utilized by the learning. Extensive experimental results show that, compared to state-of-the-art methods, not only our model is more effective, but also it requires less information to reach a certain level of accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源