论文标题
关于NFI-Topogology的注释
A note on the NFI-topology
论文作者
论文摘要
在[S0]中引入的$ NFI $ -TOPOLOGY是理论$ t $的石材空间上的拓扑,取决于$ t $ $ t $的$ t $ t $。该拓扑已在[S0]中用于描述$(t,t^ - )$的一组通用传感器(不变的集合,将$ t^ - $ in $ t^ - $转换为$ t $中的开放式套件)。在本文中,我们表明,与稳定的情况相反,$ nfi $ - 学术不必对$ t^ - $中的参数不变,但是对于任何简单的$ t $来说,这是一个薄弱的版本。我们还注意到,对于可爱的对扩展,与\ em wnfcp \ em的理论有关,拓扑是$ t^ - $的$ \ emptyset $上的不变。
The $NFI$-topology, introduced in [S0], is a topology on the Stone space of a theory $T$ that depends on a reduct $T^-$ of $T$. This topology has been used in [S0] to describe the set of universal transducers for $(T,T^-)$ (invariants sets that translates forking-open sets in $T^-$ to forking-open sets in $T$). In this paper we show that in contrast to the stable case, the $NFI$-topology need not be invariant over parameters in $T^-$ but a weak version of this holds for any simple $T$. We also note that for the lovely pair expansions, of theories with the \em wnfcp\em , the topology is invariant over $\emptyset$ in $T^-$.