论文标题
具有罗宾边界条件的一维Schrödinger操作员的基本差距
The fundamental gap for a one-dimensional Schrödinger operator with Robin boundary conditions
论文作者
论文摘要
对于Schrödinger算子,在具有凸面或对称单孔电位的间隔内以及Robin或Neumann边界条件下,当电势恒定时,将两个最低特征值之间的差距最小化。我们也有$ p $ -laplacian的结果。
For Schrödinger operators on an interval with either convex or symmetric single-well potentials, and Robin or Neumann boundary conditions, the gap between the two lowest eigenvalues is minimised when the potential is constant. We also have results for the $p$-Laplacian.