论文标题

多任务协作情报的位分配

Bit Allocation for Multi-Task Collaborative Intelligence

论文作者

Alvar, Saeed Ranjbar, Bajić, Ivan V.

论文摘要

最近的研究表明,协作情报(CI)是在移动设备上部署人工智能(AI)服务的有前途的框架。在CI中,移动设备和云之间分配了深层神经网络。在移动设备上获得的深度特征被压缩并转移到云中以完成推理。到目前为止,文献中的方法着重于将单个深度特征张量从移动设备传输到云。此类方法不适用于具有多个分支和跳过连接的最近的一些高性能网络。在本文中,我们提出了用于多式多任务CI的第一种位分配方法。我们首先建立了多个任务的联合失真的模型,该模型是分配给不同深度特征张量的比特率的函数。然后,使用提出的模型,我们解决了在总率约束下的利率 - 延伸优化问题,以获得要转移的张量之间的最佳速率分配。实验结果说明了所提出的方案与几种替代位分配方法相比的功效。

Recent studies have shown that collaborative intelligence (CI) is a promising framework for deployment of Artificial Intelligence (AI)-based services on mobile devices. In CI, a deep neural network is split between the mobile device and the cloud. Deep features obtained at the mobile are compressed and transferred to the cloud to complete the inference. So far, the methods in the literature focused on transferring a single deep feature tensor from the mobile to the cloud. Such methods are not applicable to some recent, high-performance networks with multiple branches and skip connections. In this paper, we propose the first bit allocation method for multi-stream, multi-task CI. We first establish a model for the joint distortion of the multiple tasks as a function of the bit rates assigned to different deep feature tensors. Then, using the proposed model, we solve the rate-distortion optimization problem under a total rate constraint to obtain the best rate allocation among the tensors to be transferred. Experimental results illustrate the efficacy of the proposed scheme compared to several alternative bit allocation methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源