论文标题

椭圆形K3表面模量的压缩:稳定和环形

Compactifications of moduli of elliptic K3 surfaces: stable pair and toroidal

论文作者

Alexeev, Valery, Brunyate, Adrian, Engel, Philip

论文摘要

我们通过稳定的SLC对描述了椭圆形K3表面的模量空间的两个几何有意义的压缩,用于两种极化分裂的选择,并表明它们的正常化是模量空间的两个不同的环形压实,一个用于RAMIFIENT DIVISOR,另一个用于Ramational curve curve curve divisor。 在证明过程中,我们进一步发展了具有24个奇异性的整体仿射球的理论。 我们还构造了类型的合理(广义)椭圆稳定的SLC表面的模量$ {\ bf a_n} $($ n \ ge1 $),$ {\ bf c_n} $($ n \ ge0 $)和$ {\ bf e_n} $($ n \ ge0 $)。

We describe two geometrically meaningful compactifications of the moduli space of elliptic K3 surfaces via stable slc pairs, for two different choices of a polarizing divisor, and show that their normalizations are two different toroidal compactifications of the moduli space, one for the ramification divisor and another for the rational curve divisor. In the course of the proof, we further develop the theory of integral affine spheres with 24 singularities. We also construct moduli of rational (generalized) elliptic stable slc surfaces of types ${\bf A_n}$ ($n\ge1$), ${\bf C_n}$ ($n\ge0$) and ${\bf E_n}$ ($n\ge0$).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源