论文标题

通过二阶非线性室温光子逻辑Qubit

Room-Temperature Photonic Logical Qubits via Second-Order Nonlinearities

论文作者

Krastanov, Stefan, Heuck, Mikkel, Shapiro, Jeffrey H., Narang, Prineha, Englund, Dirk R., Jacobs, Kurt

论文摘要

非线性光学材料和微孔子的最新进展已将大量光学非线性的量子计算带入了可能性领域。该平台引起了极大的兴趣,这不仅是因为光子学是量子网络的明显选择,还因为它可能是在室温下进行量子信息处理的唯一可行途径。我们引入了一个用于室温光子量子逻辑的范式,该范式显着简化了各种量子电路的实现,尤其是误差校正。它仅使用最强大的散装非线性,即$χ^{(2)} $非线性敏感性。关键元素是一个三模式谐振器,该谐振器实现可编程的玻感量子逻辑门。我们表明,这些元素中只有两个就可以在玻感代码上使用完整的紧凑型误差校正电路,而无需测量或馈送方向控制。非线性光学材料和光子电路中电流进展的推断表明,这种电路应在未来十年内实现。

Recent progress in nonlinear optical materials and microresonators has brought quantum computing with bulk optical nonlinearities into the realm of possibility. This platform is of great interest, not only because photonics is an obvious choice for quantum networks, but also because it may be the only feasible route to quantum information processing at room temperature. We introduce a paradigm for room-temperature photonic quantum logic that significantly simplifies the realization of various quantum circuits, and in particular, of error correction. It uses only the strongest available bulk nonlinearity, namely the $χ^{(2)}$ nonlinear susceptibility. The key element is a three-mode resonator that implements programmable bosonic quantum logic gates. We show that just two of these elements suffice for a complete, compact error-correction circuit on a bosonic code, without the need for measurement or feed-forward control. An extrapolation of current progress in nonlinear optical materials and photonic circuits indicates that such circuitry should be achievable within the next decade.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源