论文标题
晶格可观察的横向动量依赖性分解
Transverse momentum dependent factorization for lattice observables
论文作者
论文摘要
使用软共线理论,我们得出了准透明摩肌依赖性(准TMD)算子的分解定理。我们在一环水平上检查分解定理,并计算相应的系数函数和异常尺寸。分解的表达是由物理TMD分布和无扰动晶格相关的因子构建的。我们证明了与晶格相关的功能以适当构造的比率取消。这些比率可用于探索TMD分布的各种特性,例如非扰动进化核。提出了对TMD的这种比率和相关连续性特性的讨论。
Using soft collinear effective field theory, we derive the factorization theorem for the quasi-transverse-momentum-dependent (quasi-TMD) operator. We check the factorization theorem at one-loop level and compute the corresponding coefficient function and anomalous dimensions. The factorized expression is built from the physical TMD distribution, and a nonperturbative lattice related factor. We demonstrate that lattice related functions cancel in appropriately constructed ratios. These ratios could be used to explore various properties of TMD distributions, for instance, the nonperturbative evolution kernel. A discussion of such ratios and the related continuum properties of TMDs is presented.