论文标题

缓慢的多体内定位超出一个维度

Slow many-body delocalization beyond one dimension

论文作者

Doggen, Elmer V. H., Gornyi, Igor V., Mirlin, Alexander D., Polyakov, Dmitry G.

论文摘要

我们研究了用于准1D和2D几何形状相互作用的硬核玻色子的离域动力学,系统尺寸和时间尺度与最新实验相当。结果与1D案例非常相似,其缓慢,延伸的动力学以幂律衰减为特征。从这种衰变的冻结中,我们将重症障碍$ W_C(L,D)$推断为长度$ L $和宽度$ D $的函数。在准1D案例中,$ w_c $在固定$ d $时具有有限的大$ l $限制,这与$ d $相当大。在2D情况下,$ w_c(l,l)$用$ l $生长。结果与多体定位过渡的雪崩图片一致。

We study the delocalization dynamics of interacting disordered hard-core bosons for quasi-1D and 2D geometries, with system sizes and time scales comparable to state-of-the-art experiments. The results are strikingly similar to the 1D case, with slow, subdiffusive dynamics featuring power-law decay. From the freezing of this decay we infer the critical disorder $W_c(L, d)$ as a function of length $L$ and width $d$. In the quasi-1D case $W_c$ has a finite large-$L$ limit at fixed $d$, which increases strongly with $d$. In the 2D case $W_c(L,L)$ grows with $L$. The results are consistent with the avalanche picture of the many-body localization transition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源