论文标题
通过自动理论镜头分布式图问题
Distributed graph problems through an automata-theoretic lens
论文作者
论文摘要
图形问题的局部性是最小的距离$ t $,因此每个节点都可以根据其半径-U $ T $邻域选择自己的解决方案的一部分。在许多设置中,当且仅当其具有较小的位置时,就可以使用分布式或并行算法有效地解决图问题。 在这项工作中,我们试图自动化解决性和局部性的研究:鉴于图形问题的描述$π$,我们想确定$π$是否可解决,什么是$π$的渐近位置作为图形大小的函数。否则,我们试图自动合成有效的分布式和并行算法来解决$π$。 我们专注于本地可检查的图形问题;这些问题是,如果解决方案在所有恒定的拉迪乌斯社区中看起来都是可行的,则解决方案是可行的。此类问题的先前工作主要带来了坏消息:与当地有关的问题总体上是不确定的,即使我们专注于标记的路径和周期的情况,确定局部性为$ \ Mathsf {pspace} $ - HARD(BALLIUE等人,PODC 2019)。 对于未标记的路径和周期的病例,我们将先前的负面结果与有效的算法相互补充,作为延伸的生根树。我们引入了一种新的自动机理论观点,用于研究本地可检查的图形问题。我们将本地可检查的问题$π$表示为一个非确定的有限自动机$ \ MATHCAL {M} $,上面是一个Unary Alphabet。我们识别自动机$ \ Mathcal {m} $的多项式时间计算属性,几乎完全捕获了$π$的循环和路径中的$π$的可溶性和局部性,但一种特定情况是$ \ mbox {co- $ \ $ \ $ \ mathsf {np} $} $ - 完成。
The locality of a graph problem is the smallest distance $T$ such that each node can choose its own part of the solution based on its radius-$T$ neighborhood. In many settings, a graph problem can be solved efficiently with a distributed or parallel algorithm if and only if it has a small locality. In this work we seek to automate the study of solvability and locality: given the description of a graph problem $Π$, we would like to determine if $Π$ is solvable and what is the asymptotic locality of $Π$ as a function of the size of the graph. Put otherwise, we seek to automatically synthesize efficient distributed and parallel algorithms for solving $Π$. We focus on locally checkable graph problems; these are problems in which a solution is globally feasible if it looks feasible in all constant-radius neighborhoods. Prior work on such problems has brought primarily bad news: questions related to locality are undecidable in general, and even if we focus on the case of labeled paths and cycles, determining locality is $\mathsf{PSPACE}$-hard (Balliu et al., PODC 2019). We complement prior negative results with efficient algorithms for the cases of unlabeled paths and cycles and, as an extension, for rooted trees. We introduce a new automata-theoretic perspective for studying locally checkable graph problems. We represent a locally checkable problem $Π$ as a nondeterministic finite automaton $\mathcal{M}$ over a unary alphabet. We identify polynomial-time-computable properties of the automaton $\mathcal{M}$ that near-completely capture the solvability and locality of $Π$ in cycles and paths, with the exception of one specific case that is $\mbox{co-$\mathsf{NP}$}$-complete.