论文标题
关于Bilimovich提出的EULER方程的流量学的非单位变形
On rheonomic nonholonomic deformations of the Euler equations proposed by Bilimovich
论文作者
论文摘要
公元1913年,比利莫维奇(Bilimovich)观察到,在广义速度约束中的流动线性和同质性是理想的。作为一个典型的例子,他考虑了Euler方程的流行法变形,该方程等于非物质萨斯洛夫系统。对于Bilimovich系统的运动方程式,运动的方程还原为正交,这是在流行和硬化的情况下讨论的。
In 1913 A.D. Bilimovich observed that rheonomic linear and homogeneous in generalized velocities constraints are ideal. As a typical example, he considered rheonomic nonholonomic deformation of the Euler equations which scleronomic version is equivalent to the nonholonomic Suslov system. For the Bilimovich system equations of motion are reduced to quadrature, which is discussed in rheonomic and scleronomic cases.