论文标题
低熔点合金(LMPA)/聚合物复合材料的微观结构设计,用于软握
Microstructure Design of Low-Melting-Point Alloy (LMPA)/ Polymer Composites for Dynamic Dry Adhesion Tuning in Soft Gripping
论文作者
论文摘要
可调的干粘附是符合符合操作的关键机制。可以通过外部刺激通过可逆地改变复合材料的物理特性(例如刚度)来控制粘合力和要抓住的物体之间的范德华力的力量。除其他因素外,最大的握力FMAX及其可调性取决于握把界面上的应力分布及其断裂动力学(在分离过程中),这又由复合微结构确定。在这里,我们提出了一个计算框架,用于建模和设计一类二进制智能复合材料,该二进制智能复合材料包含多孔低熔合合金(LMPA)相和聚合物相,以实现可取的动态可调的干燥粘附。特别是,我们采用空间相关函数来量化,建模并代表复合材料的复杂双连续微结构,从中可以使用随机优化生成各种现实的虚拟3D复合微观结构。然后,采用了最近开发的体积补偿晶格粒子(VCLP)方法来对动态界面断裂过程进行建模,以计算不同复合微结构的FMAX。我们专注于通过复合材料实现干粘附调谐的界面缺陷调整(IDT)机制,在该机构中,由于焦耳加热引起的LMPA相的热膨胀使粘附界面上的小裂纹初始化,随后导致由于间种间菌株而导致抓紧物的脱离物。我们发现,对于此处研究的微观结构,可以在LMPA相的热膨胀之前和之后对FMAX进行10倍的动态调整。我们的计算结果可以为LMPA聚合物复合材料的实验制造提供宝贵的指导。
Tunable dry adhesion is a crucial mechanism in compliant manipulation. The gripping force, mainly originated from the van der Waals force between the adhesive composite and the object to be gripped, can be controlled by reversibly varying the physical properties (e.g., stiffness) of the composite via external stimuli. The maximal gripping force Fmax and its tunability depend on, among other factors, the stress distribution on the gripping interface and its fracture dynamics (during detaching), which in turn are determined by the composite microstructure. Here, we present a computational framework for the modeling and design of a class of binary smart composites containing a porous low-melting-point alloy (LMPA) phase and a polymer phase, in order to achieve desirable dynamically tunable dry adhesion. In particular, we employ spatial correlation functions to quantify, model and represent the complex bi-continuous microstructure of the composites, from which a wide spectrum of realistic virtual 3D composite microstructures can be generated using stochastic optimization. A recently developed volume-compensated lattice-particle (VCLP) method is then employed to model the dynamic interfacial fracture process to compute Fmax for different composite microstructures. We focus on the interface defect tuning (IDT) mechanism for dry adhesion tuning enabled by the composite, in which the thermal expansion of the LMPA phase due to Joule heating initializes small cracks on the adhesion interface, subsequently causing the detachment of the gripper from the object due to interfacial fracture. We find that for an optimal microstructure among the ones studied here, a 10-fold dynamic tuning of Fmax before and after the thermal expansion of the LMPA phase can be achieved. Our computational results can provide valuable guidance for experimental fabrication of the LMPA-polymer composites.