论文标题
分数PDE的数值延续:尖锐的牙齿和肿的蛇
Numerical continuation for fractional PDEs: sharp teeth and bloated snakes
论文作者
论文摘要
涉及分数拉普拉斯操作员的部分微分方程(PDE)已越来越多地用于建模非本地扩散过程,并使用分析和数值方法进行了积极研究。这项工作的目的是研究光谱分数拉普拉斯对有限域对反应扩散系统分叉结构的影响。为此,我们使用高级数值延续技术来计算解决方案分支。由于目前仅提供涉及标准Laplacian的支持系统,因此我们首先扩展了PDE2Path软件以处理分数PDE。然后将新功能应用于Allen-Cahn方程,Swift-Hohenberg方程和Schnakenberg系统的研究(在该系统中,标准的Laplacian分别被光谱分数Laplacian取代)。我们的研究揭示了一些共同的影响,这有助于更好地理解通用反应扩散系统中的分数扩散。特别是,我们研究了分叉图的变化,还研究了分数拉普拉斯级阶的变化,研究非平凡稳态的空间结构。我们的结果表明,分数顺序可以引起全球分叉结构的非常重要的定性和定量变化。
Partial differential equations (PDEs) involving fractional Laplace operators have been increasingly used to model non-local diffusion processes and are actively investigated using both analytical and numerical approaches. The purpose of this work is to study the effects of the spectral fractional Laplacian on the bifurcation structure of reaction-diffusion systems on bounded domains. In order to do this we use advanced numerical continuation techniques to compute the solution branches. Since current available continuation packages only support systems involving the standard Laplacian, we first extend the pde2path software to treat fractional PDEs. The new capabilities are then applied to the study of the Allen-Cahn equation, the Swift-Hohenberg equation and the Schnakenberg system (in which the standard Laplacian is each replaced by the spectral fractional Laplacian). Our study reveals some common effects, which contributes to a better understanding of fractional diffusion in generic reaction-diffusion systems. In particular, we investigate the changes in snaking bifurcation diagrams and also study the spatial structure of non-trivial steady states upon variation of the order of the fractional Laplacian. Our results show that the fractional order can induce very significant qualitative and quantitative changes in global bifurcation structures.