论文标题

学习以最少的人类努力在现实世界中行走

Learning to Walk in the Real World with Minimal Human Effort

论文作者

Ha, Sehoon, Xu, Peng, Tan, Zhenyu, Levine, Sergey, Tan, Jie

论文摘要

可靠,稳定的运动一直是腿部机器人最根本的挑战之一。深度强化学习(DEEP RL)已成为一种自主制定此类控制政策的有前途的方法。在本文中,我们开发了一个系统,用于以最少的人为努力在现实世界中以深度RL学习腿部的运动政策。机器人学习系统的主要困难是自动数据收集和安全性。我们通过制定多任务学习程序和安全受限的RL框架来克服这两个挑战。我们测试了学习在三个不同地形上行走的任务:平坦的地面,柔软的床垫和带缝隙的门垫。我们的系统可以自动有效地学习微型机器人的运动技能,而没有人为干预。补充视频可以在:\ url {https://youtu.be/cwyiq6dcgoc}中找到。

Reliable and stable locomotion has been one of the most fundamental challenges for legged robots. Deep reinforcement learning (deep RL) has emerged as a promising method for developing such control policies autonomously. In this paper, we develop a system for learning legged locomotion policies with deep RL in the real world with minimal human effort. The key difficulties for on-robot learning systems are automatic data collection and safety. We overcome these two challenges by developing a multi-task learning procedure and a safety-constrained RL framework. We tested our system on the task of learning to walk on three different terrains: flat ground, a soft mattress, and a doormat with crevices. Our system can automatically and efficiently learn locomotion skills on a Minitaur robot with little human intervention. The supplemental video can be found at: \url{https://youtu.be/cwyiq6dCgOc}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源