论文标题

顶点分裂,一致的实现和括号三角形的全球刚度

Vertex Splitting, Coincident Realisations and Global Rigidity of Braced Triangulations

论文作者

Cruickshank, James, Jackson, Bill, Tanigawa, Shin-ichi

论文摘要

我们简短地证明了约旦和Tanigawa的结果,即4个连接的图具有一个跨度的平面三角剖分作为适当的子图,在R^3中通常是全球刚性的。我们的证明是基于一种新的足够条件,用于所谓的顶点分裂操作,以保留R^d中的通用全球刚度。

We give a short proof of a result of Jordan and Tanigawa that a 4-connected graph which has a spanning planar triangulation as a proper subgraph is generically globally rigid in R^3. Our proof is based on a new sufficient condition for the so called vertex splitting operation to preserve generic global rigidity in R^d.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源