论文标题

MA-DST:基于多意见的可扩展对话框状态跟踪

MA-DST: Multi-Attention Based Scalable Dialog State Tracking

论文作者

Kumar, Adarsh, Ku, Peter, Goyal, Anuj Kumar, Metallinou, Angeliki, Hakkani-Tur, Dilek

论文摘要

面向任务的对话框代理为用户提供了自然语言接口,以完成目标。对话框状态跟踪(DST)通常是这些系统的核心组成部分,它在整个对话中跟踪系统对用户目标的理解。为了启用准确的多域DST,该模型需要在过去的话语和插槽语义之间编码依赖项,并了解对话框上下文,包括远程跨域参考。我们为此任务介绍了一种新颖的体系结构,以通过使用多种粒度的注意机制来更强大地编码对话历史记录和插槽语义。特别是,我们使用跨注意事件来模拟不同语义层面和自我注意的上下文与插槽之间的关系,以解决跨域的核心。此外,我们提出的体系结构不依赖于事先了解域本体,也可以在新域或看不见的插槽值的零照片设置中使用。我们的模型将联合目标精度提高了全数据设置中的5%(绝对),在Multiwoz 2.1数据集中的当前最新设置上,在零弹位设置中最多可提高2%(绝对)。

Task oriented dialog agents provide a natural language interface for users to complete their goal. Dialog State Tracking (DST), which is often a core component of these systems, tracks the system's understanding of the user's goal throughout the conversation. To enable accurate multi-domain DST, the model needs to encode dependencies between past utterances and slot semantics and understand the dialog context, including long-range cross-domain references. We introduce a novel architecture for this task to encode the conversation history and slot semantics more robustly by using attention mechanisms at multiple granularities. In particular, we use cross-attention to model relationships between the context and slots at different semantic levels and self-attention to resolve cross-domain coreferences. In addition, our proposed architecture does not rely on knowing the domain ontologies beforehand and can also be used in a zero-shot setting for new domains or unseen slot values. Our model improves the joint goal accuracy by 5% (absolute) in the full-data setting and by up to 2% (absolute) in the zero-shot setting over the present state-of-the-art on the MultiWoZ 2.1 dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源