论文标题

混合线性回归的元学习

Meta-learning for mixed linear regression

论文作者

Kong, Weihao, Somani, Raghav, Song, Zhao, Kakade, Sham, Oh, Sewoong

论文摘要

在现代监督学习中,有很多任务,但其中许多仅与少量标记数据有关。这些包括来自医疗图像处理和机器人相互作用的数据。即使每个任务都不能孤立地进行有意义的培训,但通过利用一些相似之处,人们试图从过去的经验中跨越的任务进行元学习。我们研究了一个基本的兴趣问题:何时可以为缺乏大数据的任务弥补少量数据吗?我们专注于一个规范的场景,其中每个任务都是从$ k $线性回归的混合物中汲取的,并确定了足够的条件以进行这种优雅的交换;与大数据任务可用时相似的示例总数类似。为此,我们介绍了一种新型的光谱方法,并表明我们可以借助$ \tildeΩ(k^{3/2})$中等数据任务有效地利用小型数据任务。

In modern supervised learning, there are a large number of tasks, but many of them are associated with only a small amount of labeled data. These include data from medical image processing and robotic interaction. Even though each individual task cannot be meaningfully trained in isolation, one seeks to meta-learn across the tasks from past experiences by exploiting some similarities. We study a fundamental question of interest: When can abundant tasks with small data compensate for lack of tasks with big data? We focus on a canonical scenario where each task is drawn from a mixture of $k$ linear regressions, and identify sufficient conditions for such a graceful exchange to hold; The total number of examples necessary with only small data tasks scales similarly as when big data tasks are available. To this end, we introduce a novel spectral approach and show that we can efficiently utilize small data tasks with the help of $\tildeΩ(k^{3/2})$ medium data tasks each with $\tildeΩ(k^{1/2})$ examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源