论文标题
K理论类型的量子CW复合物
The K-theory type of quantum CW-complexes
论文作者
论文摘要
复杂的投影空间的多余量化量化缺乏幼稚的量子CW复合结构,因为不存在将$ n $ skeleton嵌入到$(n+1)$ - 骨架中的嵌入。为了克服这一困难,我们介绍了CW-Waldhausen类别的框架,其中包括弱等价的概念,导致在Unital C*-Algebras领域中有限的弱量子CW-Complex概念。在这里,弱等效性是Unital $*$ - 同态诱导K理论的同构。更好的是,我们在K理论中构建了CUP产品的非交换性对应物,这在经典案例中等同于其标准版本。为此,我们定义了K-Topology,这是Grothendieck拓扑的非共同版本,涵盖了由连续地图关联的紧凑型主束和基地给出的家族,这导致了对非交通性C*-Algebras的多liuldlicative K理论的理论的理论。将其与紧凑型量子空间类别的CW-Waldhausen结构相结合,我们获得了有限的弱量子CW-复合物的乘法K理论类型。我们表明,复杂的投影空间的标准CW复合结构的非同态量化享受相同的乘法K理论类型,该类型承认以截短的多项式计算Atiyah-TODD计算Atiyah-TODD计算。
The multipullback quantization of complex projective spaces lacks the naive quantum CW-complex structure because the quantization of an embedding of the $n$-skeleton into the $(n+1)$-skeleton does not exist. To overcome this difficulty, we introduce the framework of cw-Waldhausen categories, which includes the concept of weak equivalences leading to the notion of a finite weak quantum CW-complex in the realm of unital C*-algebras. Here weak equivalences are unital $*$-homomorphisms that induce an isomorphism on K-theory. Better still, we construct a noncommutative counterpart of the cup product in K-theory, which is equivalent to its standard version in the classical case. To this end, we define k-topology, a noncommutative version of Grothendieck topology with covering families given by compact principal bundles and bases related by continuous maps, which leads to the much desired idea of multiplicative K-theory for noncommutative C*-algebras. Combining this with cw-Waldhausen structure on the category of compact quantum spaces, we arrive at the multiplicative K-theory type of finite weak quantum CW-complexes. We show that non-isomorphic quantizations of the standard CW-complex structure of a complex projective space enjoy the same multiplicative K-theory type admitting a noncommutative generalization of the Atiyah--Todd calculation of the K-theory ring in terms of truncated polynomials.