论文标题
硬球动态:弱与硬碰撞
Hard spheres dynamics: weak vs hard collisions
论文作者
论文摘要
我们考虑了整个空间中有限的$ n $硬球的动作$ \ mathbb {r}^n $。颗粒自由移动,直到经历弹性碰撞。我们使用最新的补偿整合性理论,以估算碰撞偏离粒子的数量。我们的结果是用hodographs表示的,它告诉我们,$ O(n^2)$碰撞很重要。
We consider the motion of a finite though large number $N$ of hard spheres in the whole space $\mathbb{R}^n$. Particles move freely until they experience elastic collisions. We use our recent theory of Compensated Integrability in order to estimate how much the particles are deviated by collisions. Our result, which is expressed in terms of hodographs, tells us that only $O(N^2)$ collisions are significant.