论文标题
彩色tverberg问题,扩展和新结果
Colored Tverberg problem, extensions and new results
论文作者
论文摘要
我们通过应用不同的方法,工具和想法,证明了“多彩彩色Tverberg定理”和“平衡的彩色Tverberg Theorem”。第一个定理的证明使用多个棋盘络合物(作为配置空间)和Eilenberg-krasnoselskii的eilenberg-krasnoselkii理论,用于非自由动作的e象映射学位。第二个结果的证明依赖于由离散摩尔斯理论确定的配置空间的高连通性。
We prove a "multiple colored Tverberg theorem" and a "balanced colored Tverberg theorem", by applying different methods, tools and ideas. The proof of the first theorem uses multiple chessboard complexes (as configuration spaces) and Eilenberg-Krasnoselskii theory of degrees of equivariant maps for non-free actions. The proof of the second result relies on high connectivity of the configuration space, established by discrete Morse theory.