论文标题

使用多层神经网络,电源限制的电缆容量最大化

Supply-Power-Constrained Cable Capacity Maximization Using Multi-Layer Neural Networks

论文作者

Cho, Junho, Chandrasekhar, Sethumadhavan, Sula, Erixhen, Olsson, Samuel, Burrows, Ellsworth, Raybon, Greg, Ryf, Roland, Fontaine, Nicolas, Antona, Jean-Christophe, Grubb, Steve, Winzer, Peter, Chraplyvy, Andrew

论文摘要

我们通过实验解决了在巨大的平行潜艇电缆上下文中,在总供应能力限制下最大化容量的问题,即,对于纤维KERR非线性不是主要限制的空间不偶联系统。通过使用经过从12 SPAN 744 km光纤链路获得的大量测量数据训练的多层神经网络,作为真实光学系统的准确数字双胞胎,我们实验性地相对于基于梯度降低的Algorithm,实验性地最大程度地提高了传输信号的光谱功能。通过观察几乎任意初始条件的收敛到大致相同的最大容量和功率分布,我们认为容量表面是发射信号电源分布的凹面函数。然后,与包含GFF的常规系统相比,我们从光学放大器中消除增益平坦的过滤器(GFF)会导致每瓦电源功率的大量增长。

We experimentally solve the problem of maximizing capacity under a total supply power constraint in a massively parallel submarine cable context, i.e., for a spatially uncoupled system in which fiber Kerr nonlinearity is not a dominant limitation. By using multi-layer neural networks trained with extensive measurement data acquired from a 12-span 744-km optical fiber link as an accurate digital twin of the true optical system, we experimentally maximize fiber capacity with respect to the transmit signal's spectral power distribution based on a gradient-descent algorithm. By observing convergence to approximately the same maximum capacity and power distribution for almost arbitrary initial conditions, we conjecture that the capacity surface is a concave function of the transmit signal power distribution. We then demonstrate that eliminating gain flattening filters (GFFs) from the optical amplifiers results in substantial capacity gains per Watt of electrical supply power compared to a conventional system that contains GFFs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源