论文标题

沟通高效的边缘AI:算法和系统

Communication-Efficient Edge AI: Algorithms and Systems

论文作者

Shi, Yuanming, Yang, Kai, Jiang, Tao, Zhang, Jun, Letaief, Khaled B.

论文摘要

人工智能(AI)在各个领域取得了显着突破,从语音处理,图像分类到药物发现。这是由数据的爆炸性增长,机器学习的进步(尤其是深度学习)以及轻松访问强大的计算资源所驱动的。特别是,边缘设备(例如,IoT设备)的广泛部署生成了前所未有的数据量表,这为获得准确的模型并在网络边缘开发了各种智能应用程序提供了机会。但是,由于渠道质量,交通拥堵和/或隐私问题,因此不能全部从最终设备发送到云进行处理。通过将AI模型的推理和训练过程推向边缘节点,Edge AI已成为有希望的替代方案。边缘的AI需要在边缘设备之间进行密切合作,例如智能手机和智能车辆,以及无线接入点和基站的边缘服务器,这导致了大量的通信开销。在本文中,我们对克服这些交流挑战的各种技术的最新发展进行了全面调查。具体来说,我们首先确定边缘AI系统中的关键沟通挑战。然后,我们从网络边缘的培训和推理任务的算法和系统角度介绍了沟通高效的技术。还突出了潜在的未来研究方向。

Artificial intelligence (AI) has achieved remarkable breakthroughs in a wide range of fields, ranging from speech processing, image classification to drug discovery. This is driven by the explosive growth of data, advances in machine learning (especially deep learning), and easy access to vastly powerful computing resources. Particularly, the wide scale deployment of edge devices (e.g., IoT devices) generates an unprecedented scale of data, which provides the opportunity to derive accurate models and develop various intelligent applications at the network edge. However, such enormous data cannot all be sent from end devices to the cloud for processing, due to the varying channel quality, traffic congestion and/or privacy concerns. By pushing inference and training processes of AI models to edge nodes, edge AI has emerged as a promising alternative. AI at the edge requires close cooperation among edge devices, such as smart phones and smart vehicles, and edge servers at the wireless access points and base stations, which however result in heavy communication overheads. In this paper, we present a comprehensive survey of the recent developments in various techniques for overcoming these communication challenges. Specifically, we first identify key communication challenges in edge AI systems. We then introduce communication-efficient techniques, from both algorithmic and system perspectives for training and inference tasks at the network edge. Potential future research directions are also highlighted.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源