论文标题

$ k_ {5} $的边缘着色 - 次要免费图形

The edge colorings of $K_{5}$-minor free graphs

论文作者

Feng, Jieru, Gao, Yuping, Wu, Jianliang

论文摘要

1965年,Vible证明,每个平面图$ g $具有最高度$δ\ geq 8 $是边缘$δ$ - 可油。还证明,每个平面图$ g $具有最高度$δ= 7 $是边缘$δ$ - 可由桑德斯和赵,由张独立于Zhang。在本文中,我们通过表明每$ k_5 $ -minor的图形最高度$δ$至少七个是边缘$δ$ - 可油的,扩展了上述结果。

In 1965, Vizing proved that every planar graph $G$ with maximum degree $Δ\geq 8$ is edge $Δ$-colorable. It is also proved that every planar graph $G$ with maximum degree $Δ=7$ is edge $Δ$-colorable by Sanders and Zhao, independently by Zhang. In this paper, we extend the above results by showing that every $K_5$-minor free graph with maximum degree $Δ$ at least seven is edge $Δ$-colorable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源