论文标题

大规模和旋转祖细胞的三维核心折叠超新星模拟

Three-dimensional core-collapse supernova simulations of massive and rotating progenitors

论文作者

Powell, Jade, Müller, Bernhard

论文摘要

我们介绍了对一般相对论中微子水力学代码椰子-FMT进行的大规模旋转和非旋转祖细胞的核心折叠的三维模拟,并分析了它们的爆炸特性和重力波信号。祖细胞模型包括具有初始氦星质量$ 39 \,m _ {\ odot} $和$ 20 \,m _ {\ odot} $的狼射线星,以及$ 18 \,m _ {\ odot} $ RED SUPERGIANT。 $ 39 \,m _ {\ odot} $模型是快速旋转器,而另外两个祖细胞是不旋转的。两种狼射线模型都会产生健康的中微子驱动的爆炸,而红色超级巨头模型未能爆炸。在模拟结束时,爆炸能量已经达到$ 1.1 \ times 10^{51} \,\ Mathrm {erg} $和$ 0.6 \ times 10^{51} \,\ Mathrm {erg {erg} $,用于$ 39 \ \,m_ _ {eRG} $ 分别。这些爆炸产生了相对较高的质量的中子星,但踢得适度。由于双极爆炸几何形状与旋转轴的对齐,因此在$ 39 \,m _ {\ odot} $模型中,旋转和踢球之间的旋转和踢球之间的$ 30^\ Circ $的错位相对较小。就引力波信号而言,大量且迅速旋转的$ 39 \,m _ {\ odot} $祖细胞以大型重力波振幅脱颖而出,这将使爱因斯坦望远镜可将其检测到近2 mpc。对于此模型,我们发现与非旋转情况相比,旋转显着改变了F模式对原始中子星参数的特征重力波频率的依赖性。尽管在$ 18 \,m _ {\ odot} $模型中,当前最敏感的频率带上了当前重力波探测器的最敏感频带,但其他两个祖细胞的检测距离较小,但当前重力波检测器的频带显着低频发射。

We present three-dimensional simulations of the core-collapse of massive rotating and non-rotating progenitors performed with the general relativistic neutrino hydrodynamics code CoCoNuT-FMT and analyse their explosion properties and gravitational-wave signals. The progenitor models include Wolf-Rayet stars with initial helium star masses of $39\,M_{\odot}$ and $20\,M_{\odot}$, and an $18\,M_{\odot}$ red supergiant. The $39\,M_{\odot}$ model is a rapid rotator, whereas the two other progenitors are non-rotating. Both Wolf-Rayet models produce healthy neutrino-driven explosions, whereas the red supergiant model fails to explode. By the end of the simulations, the explosion energies have already reached $1.1\times 10^{51}\,\mathrm{erg}$ and $0.6\times 10^{51}\,\mathrm{erg}$ for the $39\,M_{\odot}$ and $20\,M_{\odot}$ model, respectively. The explosions produce neutron stars of relatively high mass, but with modest kicks. Due to the alignment of the bipolar explosion geometry with the rotation axis, there is a relatively small misalignment of $30^\circ$ between the spin and the kick in the $39\,M_{\odot}$ model. In terms of gravitational-wave signals, the massive and rapidly rotating $39\,M_{\odot}$ progenitor stands out by large gravitational-wave amplitudes that would make it detectable out to almost 2 Mpc by the Einstein Telescope. For this model, we find that rotation significantly changes the dependence of the characteristic gravitational-wave frequency of the f-mode on the proto-neutron star parameters compared to the non-rotating case. The other two progenitors have considerably smaller detection distances, despite significant low-frequency emission in the most sensitive frequency band of current gravitational-wave detectors due to the standing accretion shock instability in the $18\,M_{\odot}$ model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源