论文标题

通过自我安装和自我验证来改善BERT微调

Improving BERT Fine-Tuning via Self-Ensemble and Self-Distillation

论文作者

Xu, Yige, Qiu, Xipeng, Zhou, Ligao, Huang, Xuanjing

论文摘要

诸如BERT之类的微调预训练的语言模型已成为NLP的有效方法,并在许多下游任务中产生最先进的结果。关于将BERT适应新任务的最新研究主要集中于修改模型结构,重新设计预训练任务并利用外部数据和知识。微调策略本身尚未得到充分探索。在本文中,我们通过两种有效的机制来改善BERT的微调:自我安装和自我抗议。有关文本分类和自然语言推理任务的实验表明,我们提出的方法可以显着改善BERT的适应,而无需任何外部数据或知识。

Fine-tuning pre-trained language models like BERT has become an effective way in NLP and yields state-of-the-art results on many downstream tasks. Recent studies on adapting BERT to new tasks mainly focus on modifying the model structure, re-designing the pre-train tasks, and leveraging external data and knowledge. The fine-tuning strategy itself has yet to be fully explored. In this paper, we improve the fine-tuning of BERT with two effective mechanisms: self-ensemble and self-distillation. The experiments on text classification and natural language inference tasks show our proposed methods can significantly improve the adaption of BERT without any external data or knowledge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源